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Size dependent complexity of sequences in protein families
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Abstract. The size dependent complexity of protein sequences in various families in the FSSP database is
characterized by sequence entropy, sequence similarity and sequence identity. As the average length Lf of
sequences in the family increases, an increasing trend of the sequence entropy and a decreasing trend of
the sequence similarity and sequence identity are found. As Lf increases beyond 250, a saturation of the
sequence entropy, the sequence similarity and the sequence identity is observed. Such a saturated behavior
of complexity is attributed to the saturation of the probability Pg of global (long-range) interactions in
protein structures when Lf > 250. It is also found that the alphabet size of residue types describing the
sequence diversity depends on the value of Lf , and becomes saturated at 12.

PACS. 87.10+e General theory and mathematical aspects – 87.15.Cc Folding and sequence analysis

1 Introduction

Proteins with large sequence similarity or same homolo-
gies are classified into the same family, and one family
usually relates to one structural prototype which is given
the term fold. In a family, although the structural features
of the proteins are basically the same, the sequences may
be rather different. The consequence is that the mapping
from protein structure to protein sequence is not unique
unlike from protein sequence to protein structure, imply-
ing a complexity of the coding from sequences to struc-
tures. To understand how proteins encode their structures,
sequence analysis of protein families is usually undertaken,
and has become a hot topic in molecular biology [1–6].

Based on the protein primary database, i.e., Protein
Data Bank (PDB) [7], several databases of protein fami-
lies have been compiled into a protein secondary database,
such as the database of families of structurally similar pro-
teins (FSSP) [8], and the structural classification of pro-
teins (SCOP) [9]. Many studies have been done on the
analysis of various features for these databases of protein
families [1–6]. The FSSP database resulting from struc-
tural alignment includes many families each with a certain
structural prototype, and different families consist of dif-
ferent numbers of sequences. In the FSSP database, all the
sequences of every family are aligned, i.e., all the related
sites are aligned into columns. A site may have a (or have
no) specific effect on protein structure and/or functions.
Thus, different sites have different specificities. Some sites
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have a high specificity and the residues on them are irre-
placeable. These sites are conserved with the same types of
residues. Nevertheless, some others have a low specificity
and the residues on them are replaceable. These sites are
non-conserved with different types of residues. However,
for some non-conserved sites, the specificity may not be
very low and the number of residue types may be very
small. Such specificity of site in protein sequences relates
to the sequence complexity. The higher the averaged speci-
ficity over all sites in a family is, the lower the sequence
complexity in this family is. Obviously, a lower complex-
ity implies a lower diversity, i.e., less types of residues
are needed to construct the protein sequences in the fam-
ily. For different families the complexities are different and
may depend on the averaged sequence lengths in the fami-
lies, and the complexity can be characterized by sequence
entropy or sequence similarity. What are the statistical
features of the sequence complexities and the ratios of
conservative sites for various protein families? How many
types of residues on averaging are there for the sequences
in different families? Do these relate to the lengths of se-
quences? These are important questions and have not been
well clarified. The answers are also relevant to the alpha-
bet size (or the number of residue types) for reduction of
protein complexity based on the grouping of residues.

In this work, the complexity of sequences in various
families of the FSSP database is characterized using the
sequence entropy, similarity and identity. It is found that
for these factors there is an increasing trend of the se-
quence entropy and a decreasing trend of the sequence
similarity and identity first as the averaged length Lf of
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sequences in the family increases, and then a saturation
when Lf > 250. Such saturated behavior is attributed to
the saturation in the probability Pg of global interactions
in proteins when Lf > 250. The saturation of complex-
ity indicates that the alphabet size for those families with
Lf > 250 is about 12 types of residues. Thus when the se-
quence lengths are larger than 250 residues, one needs ba-
sically 12 types of residues to characterize the sequences.
Our results support the suggestion that the reduction of
residue types for proteins is size dependent [10].

2 Methods

2.1 Column entropy and sequence entropy

In a certain family, the column entropy [11,12] D(i) at
column i is defined as following:

D(i) = −
20∑

k=1

pk(i) ln pk(i) (1)

where pk(i) is the occupying frequency of residue k at
column i among all Ns sequences in a family. Then the
sequence entropy of a family is defined as:

D = N−1
a

Na∑

i

D(i) (2)

where Na is the number of columns.

2.2 Sequence similarity

The sequence similarity [13,14] of a family can be quanti-
fied by the similarity substitution matrix BLOSUM62 [15]
as

S =
1

(Na × N2
s )

Na∑

i

Ns∑

m=1

Ns∑

n=1

B(Rm(i), Rn(i)) (3)

where B(Rm(i), Rm(i)) is the element of the matrix de-
scribing the score between residue Rm(i) in sequence m
and residue Rn(i) in sequence n at column i. The close the
similarity of the sequences, the higher the value of S is.

2.3 Sequence identity

Sequence identity [16,17] is a factor to characterize the
information of residue types in a family, and is defined as:

I =
1

100 × (Na × Ns
2)

Na∑

i

Ns∑

m=1

Ns∑

n=1

δ(Rm(i), Rn(i)) (4)

where δ(Rm(i), Rn(i)) equals to 1 when residue Rm(i) and
Rn(i) are of the same type, otherwise it is 0. Actually, the
sequence identity I is similar to the sequence similarity
S to some degree, however, it is a more exact factor to
quantify the residue types in the family. A smaller value
of I means less residue types in the family, and vice versa.

2.4 The alphabet size for protein family

From the nature of entropy, the entropy D(i) actually de-
scribes the diversity of residues. That is, the number of
residue types at column i can be translated by eD(i). For
example, when D(i) = 0, there is only one residue type at
column i. Therefore, the sequence entropy D for a family
can be transferred to the averaged types of residues, i.e.,
the alphabet size for a protein family, and it is defined as
the following:

R = eD. (5)

Actually, the value of R is related to the minimal number
of residue types required to characterize the sequences in
the family. When D = 0, the number of residue types
for the sequences at every column is unity, while for D =
ln 20, i.e., the maximal value of D, 20 types of residues are
needed.

2.5 Family length

To detect the scaling behavior of the sequence complexity
versus protein sizes in all the families, the family length
(Lf) is introduced and is defined as:

Lf =
1

Ns

Ns∑

i=1

Li. (6)

Here Li is the sequence length of ith sequence in a family.
Similar to the study by Wood and coworkers [2], the av-
erage sequence length (not the average alignment length)
is used to represent the average size of all proteins in the
family since protein structure is encoded by the whole se-
quence which is generally longer than the aligned segment
of the proteins in the family. Thus Lf represents the av-
erage sequence length of a family, and is termed as the
family length.

2.6 Global interactions

Sequence sites contribute to the stability of protein struc-
ture by two kinds of interactions (or the contact inter-
actions generally). One is the global (long-range) inter-
actions, and the other is the local interactions [18]. Here,
the interactions in a protein are identified based on the Cα

model of proteins in which each residue is represented by
its Cα atom. The interaction is defined for two residues
when the distance between their Cα atoms is less than
7.0 Å. Then, the global (or local) interactions are clas-
sified when the sequence distance of the two interacted
residues is larger than 10 (or less than 10) residues [18].
Here the sequence distance with 10 residues for a contact
interaction means that there are 10 residues on the se-
quence between the two interacting residues. Thus, based
on the structures of proteins from the database PDB, the
probability Pg of global interactions of any a protein can
be obtained. For every family in the FSSP, the related
〈Pg〉 is the average over all the proteins in the family.
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Fig. 1. (a) A segment of five sequences based on structural
alignment in a family in the FSSP. Inserts in the alignment are
marked as single dots, and grey columns are the conservative
sites with the same residues. (b) A segment of five random
sequences generated with the ratio of hydrophobic (H) to polar
(P ) residue as 1:1. (c) Distribution of all sequences in the FSSP
over their length L. (d) Distribution of all families in the FSSP
over the family length Lf . The bin sizes are 10 residues.

3 Results and discussion

Figure 1a shows a segment of structural alignment for the
sequences in a certain family in the FSSP database (Ver-
sion 1.1) [8]. The grey columns are the conserved sites
with the same type of residues, and the single dots are the
blank insertions during the alignment. Figure 1b shows a
segment of random sequences produced by keeping the ra-
tio of hydrophobic residues to polar residues (H:P) follow-
ing its value in natural sequences, i.e. H:P � 1:1. Although
these random sequences have a similar ratio of H:P to nat-
ural proteins, they contain very little information on the
protein structures. From Figures 1a and 1b, it is seen that
the distribution of residues in Figure 1a is rather regular
compared to that in Figure 1b although the residues at
every column in Figure 1a are not exactly the same. This
suggests that the random sequences lack structural infor-
mation, and are more complex than the natural protein
sequences.

Figure 1c shows a Poisson distribution of all 27 194 se-
quences in 2871 families in the FSSP over their sequence
lengths L. It is clearly seen that most sequence lengths
contain about 200 residues, which is relevant to the re-
sults for all natural protein sequences observed so far [19].
This may result from the natural evolution of proteins
under the functional, kinetic and thermodynamic pres-
sure. Proteins with too short sequences may not be able
to perform their functions, while proteins with too long
sequences may have difficulty in keep the stability of their
structures. Figure 1d shows the distribution of families

Fig. 2. Distributions of column entropy D(i) for family 1a26
in the FSSP (a). Distribution of sequence entropy D for all
families in the FSSP (b). The sequence entropy D (c), sequence
similarity S (d), sequence identity I (e) and alphabet size R of
residues for families (f) versus the family length Lf . Each point
is averaged over 10 residues. Solid squares represent the results
for sequences in the FSSP and open points for the artificial
sequences.

over Lf in each family. Note that the lengths of all se-
quences in a family are more or less the same. It is also
noted that families with less than 20 sequences or with
more than 50% mutated sequences by protein engineering
are not included because the number of sequences in these
families is too small to make a significant statistical study.
From Figure 1d, it is seen that most families have values
of Lf between 150 and 400 residues.

Figure 2 shows the variation of sequence entropy, se-
quence similarity, and sequence identity as the value of Lf

increases. It is found that the column entropy D(i) has a
unimodal distribution for every family (see Fig. 2a), but
the positions and the heights of the peaks are slightly dif-
ferent for different families. This implies that the features
of the distribution of D(i) values are more or less the same
for various families. The distribution of sequence entropy
D for all families is similar to that of D(i), but the peak
is more sharp (see Fig. 2b). For different families with dif-
ferent lengths Lf , the values of D are different, and show
an increasing trend as Lf increases. When Lf > 250 the
values of D become saturated (see Fig. 2c). Differently,
both the sequence similarity S and sequence identity I
show a decreasing trend as Lf increases and also become
saturated at Lf = 250 (see Fig. 2d and 2e). Especially, at
saturation, both the values of S and I are basically around
zero.

In Figure 2f, the alphabet size R for protein families
versus Lf for all families in the FSSP is plotted. It can be
seen that there is an increasing trend in R when Lf < 250,
and the values of R become saturated with R = 12 when
Lf > 250. This implies that when the sequence lengths are
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larger than 250 residues, one needs basically 12 kinds of
residues to characterize the sequences. This supports the
suggestion made by Akanuma and coworkers [10] that the
reduction of residue kinds for proteins is size dependent.
When the sequence lengths are smaller than 150 residues,
one needs about 6 kinds of residues. However, this may
relate to proteins with simple structural prototypes such
as proteins of all-α or all-β types. The experiment done by
Baker and co-workers for the protein SH3 domain using 5
kinds of residues is an example [20].

Do the above mentioned results reveal the complex-
ity or the information encoded in the natural protein se-
quences? Here, we make a further study on the artificial
families which only contain random sequences with differ-
ent lengths according to the related 2871 families. That is,
for a certain family in the FSSP with Ns sequences and
average sequence length Lf , a corresponding artificial fam-
ily is constructed by generating Ns random sequences with
sequence length Lf . Four types of such families are pro-
duced with different rulers: 1) the ratio of the hydrophobic
residues to polar residues (H:P) in the random sequences
is taken as 1:1 (see Fig. 1b), 2) the ratio of the hydropho-
bic residues to polar residues is taken as 2:3, 3) the ratios
of the 20 kinds of natural residues follow the statistical
values of natural protein sequences [15], 4) the ratios of
the 20 kinds of residues are taken uniformly. Here the hy-
drophobic residues (the H-group) include residues C, M ,
F , I, L, V , W and Y , and the polar residues (the P-group)
includes residues A, G, T , S, N , Q, D, E, H , R, K and
P [21,22]. The value of H:P for sequences in type-1 fami-
lies is similar to that of protein sequences in nature [23],
and the value of H:P for sequences in type-2 families is
selected to make a comparison with type-1 families. Note
that during the generation of type-1 and type-2 families,
residues belonging to the H-group or P-group are selected
uniformly. The ratios of residues for sequences in type-3
families refer to the situation of natural proteins, while the
ratios of residues for sequences in type-4 families are sta-
tistically uniform. Note that all these random sequences
lack structural information although some sequence infor-
mation of proteins is included in sequences in type-1 and
type-3 families.

For these four types of artificial families, the related
factors D, S, I and R are worked out and plotted in Fig-
ure 2c to Figure 2f, respectively. It is seen that the values
of D, S and I are nearly the same for all four types of
families. The values of D, S, and I are about 2.8, –1, and
6 which are close, but not equal, to 3.0, –4, and 0 (the
related values in an extreme condition that all the num-
bers of 20 kinds of residues are set to be absolutely equal).
This is because for each type of families, these values of
D, S, and I are the statistical average over 2871 random
families. The sequence entropy D is obvious larger and the
sequence similarity S is smaller than those in the FSSP
case, suggesting that the sequence complexity of the se-
quences in the artificial families is high due to the lack of
the structural information. However, the sequence identity
I of the artificial families is higher than that of the natural
protein families when Lf > 250. This does not mean that

the sequence complexity of the artificial families is lower
than that in natural protein families contrary to what is
suggested by the values of D and S. The reason is that
the description of the sequence complexity using the fac-
tor I is coarse. According to the definition of I, it can
be seen that I actually describes the sequence complexity
only considering the types of residues. In a different way,
the sequence similarity S and sequence entropy D char-
acterize the sequence complexity based on the similarity
between the residues and the partition of various residue
types on all sites. Thus the factors S and D provide a
more accurate measure of the complexity than that of the
factor I.

The alphabet sizes R for the artificial families are in-
dependent on Lf too, and are higher than those for the
FSSP case. The alphabet sizes R are 18 for type-1, type-2
and type-4 families, and is 16 for type-3 families. The same
values of R for type-1, type-2 and type-4 families indicate
that these sequences which are generated only considering
the ratio between the H-type and P-type residues contain
so little information of protein sequences that their values
of R are the same as those for sequences generated com-
pletely randomly. The values of R for type-3 families is
lower since the sequences in this type of families contain
more sequence information of proteins based on a detailed
consideration of the ratio of the 20 residues. Comparing
the length dependent behavior for the families in FSSP,
the values of D, S, I and R for four types of artificial fam-
ilies are all independent of Lf . This suggests that some
length dependent information is encoded in the natural
protein sequences in the FSSP database due to the natu-
ral optimization in the functions, thermodynamic stability
and kinetic accessibility.

What is the origin of the dependence of the family
lengths on the alphabet size? Why is there a saturation of
the sequence complexity characterized by the sequence en-
tropy, the sequence similarity, and the sequence identity?
Since the sequences in artificial families generated without
structural information do not show the length dependent
behavior of sequence complexity, we seek the answer to
the above questions from the topological features of pro-
tein structures.

As is known, to realize biological functions natural pro-
teins should satisfy two requirements. One is the kinetic
requirement with which the protein folds to its native
structure rapidly, the other is the thermodynamic require-
ment with which the native structure of protein is stable.
Previous studies suggested that the kinetic requirement
and thermodynamic requirement of proteins are correlated
with each other [24]. That is, the kinetic requirement can
be satisfied as long as the thermodynamic requirement is
well satisfied. For a protein, to satisfy the stability of its
native structure, a constraint in residue composition in the
sequence is required. This is the structural constraint un-
der which the complexity of natural sequences is smaller
than that of random sequences (see Figs. 2c, 2d, 2e, and
2f). However, this structural constraint is not strict since
different sequences could fold into a similar native struc-
ture. This means that residue mutations on few sites in
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Fig. 3. Observation probability 〈Pg〉 of global interactions in
families versus Lf .

the sequences will still retain the original native structure.
But, these mutations are not arbitrary since different sites
in the sequence contribute to the stability of the native
structure differently. Some mutations on those sites with
low specificity keep the stability of the native structure,
thus the native structure could be retained. While muta-
tions on sites with high specificity will change the native
structure. Thus the greater the number of sites with low
specificity in a family, the larger the sequence complexity
is, and the greater the number of sites with high specificity
in a family, the smaller the sequence complexity is.

In another aspect, different sites in a sequence play
different roles in stabilizing the protein structure by con-
tact interactions between residues. Two kinds of contact
interactions, divided into the global interactions and the
local interactions, are included. The global interactions
stabilize the structure globally, and make the sites in the
sequence contribute to the structural stability coopera-
tively rather than specifically, while the local interactions
behave in the opposite manner. That is to say, the global
interactions weaken the individual specificity of the re-
lated sites to the stability for the native structure, and
make the residues on these sites replaceable. On the other
hand, the residues on the sites with local interactions are
irreplaceable since the effect of the individual specificity
becomes significant. Therefore, a high probability Pg of
the global interactions induces a low specificity of the sites
in the structure, while a low Pg (i.e. high probability of
local interactions) induces a high specificity of sites. These
indicate that a family with a high value of 〈Pg〉 has a high
sequence complexity, while a family with a low value of
〈Pg〉 has a low sequence complexity. In Figure 3, the vari-
ation of 〈Pg〉 for various families with different values of
Lf is plotted. It is seen that there is first an increasing
trend in 〈Pg〉 when Lf < 250, and then a saturation when
Lf > 250. Clearly, this size dependent behavior of 〈Pg〉
results in the size dependent behavior of sequence com-
plexity in various families as shown in Figures 2c, 2d, 2e,
and 2f, suggesting that the size dependent features of pro-
tein sequences comes from the size dependent features of
protein structures.

Finally, the above mentioned sequence complexity
could also be detected based on various residue groupings
[22]. Suppose that 20 kinds of natural occurring residues
are grouped into five groups [21] as X1 = {C, F, Y, W},
X2 = {M, L, I, V }, X3 = {G}, X4 = {P, A, T, S}

Fig. 4. Sequence identity I5 using 5 groups of residues versus
sequence identity I using 20 kinds of residues for families with
all values of Lf (a), with Lf < 250 and Lf > 250 (b). The
correlation coefficient C vs. N (c), and the slope of linear fitting
K vs. N with N groups of residues (d). The arrows indicate
the plateaus.

and X5 = {N, H, Q, E, D, R, K}. Then the residues in
the sequences in a family are substituted by five letters
{X1, X2, X3, X4, X5} and the related sequence identity
I5 can be calculated. A plot of I5 versus I is shown in Fig-
ure 4a. Here I relates to the case of 20 kinds of residues.
The more the points deviate from the diagonal, the less
is the similarity of the sequences due to the substitution.
The correlation coefficient C and slope K of a linear fitting
are used to depict the nature of the complexity reduction
by residue substitution. The closer the values of C and
K to 1, the less the effect of the reduction for the se-
quences in the families is. For different groupings with N
groups, the sequence identity is IN , so the related C and
K, can be obtained. To compare the results with different
Lf , all families are divided into three subsets according
to their lengths: 1) Lf < 250, 2) Lf > 250, 3) all val-
ues of Lf . In Figures 4b and 4c, the related values of K
and C, normalized between 0 to 1, versus the number of
groups of residues are plotted. The groupings of residues
in Figures 4b and 4c is taken from the simplified table of
residues made by Li et al. [21]. As a common feature, it
is found that both K and C show a plateau for each sub-
set as marked by the arrows. These plateaus indicate a
minimal number of residue types or a minimal alphabets
size for reduction. When the number of residue types is
smaller than such a minimal number, the reduction is not
reasonable and the information in the sequences is lost.
For example, for protein sequences with Lf > 250, a large
alphabet sizes with 12 kinds of residues is needed to build
their structures. Besides, these minimal alphabet sizes are
quantitatively compatible with previous results obtained
from the values of R (see Fig. 2f).

4 Conclusion

Our study on the FSSP database shows that the com-
plexity of sequences in various families depends on the
family length Lf . When Lf < 250, the complexity shows
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an increasing trend as Lf increases. When Lf > 250, all
the features become saturated and an alphabet size with
12 kinds of residues may be sufficient to characterize the
complexity for proteins.
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